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Square-planar complexes with achiral and chiral ligands have been enumerated exhaustively under the
point-groupD4h and under the symmetry group S[4] of degree 4, where they have been classified in terms of their
symmetries and permutabilities. Thereby, their stereochemical properties and relationships have been discussed
in detail. In particular, equivalency under point-group symmetry (e.g., enantiomeric relationships for chiral
complexes and prochirality for achiral complexes) and that under permutation-group symmetry (e.g., proper
and improper permutations, stereogenic and astereogenic groups, and enantiostereogenic and diastereogenic
groups) have been characterized to give a systematic format for stereochemistry and stereoisomerism.

1. Introduction. ± Although configuration of organic and inorganic molecules have
been investigated by numerous methodologies, there exists a common theoretical
standpoint in which they are based on polyhedral and polygonal models; e.g., a
tetrahedral model proposed by van×t Hoff for configuration of organic molecules [1]
and octahedral and square-planar models proposed by Werner for configuration of
inorganic molecules [2]. Thus, vast experimental results have been accumulated and
explained from the standpoint, as summarized in textbooks on organic [3] and
inorganic stereochemistry [4]. Unfortunately, however, the standpoint has been
implemented in two ways for organic as well as for inorganic stereochemistry.

The first way is a practical and experimental one that has been adopted in most
textbooks on organic and inorganic stereochemistry [3] [4], where distinct models are
discussed specifically and rather separately. For example, both the tetrahedral molecule
1 and the square-planar molecule 2 belong to the same C2v symmetry, whereas they
have different geometric arrangements (Fig. 1). As long as we rely on the first way, we
have only a qualitative method for distinguishing them. Moreover, the first way does
not provide us with a systematic methodology in reasoning that the tetrahedral
molecule (1) has no diastereoisomer, while the square-planar molecule 2 has a
diastereoisomer (3).

Fig. 1. Molecules of ligancy 4
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The second way is based on a mathematical framework that was founded by the
pioneering work published in this journal [5], where a group-theoretical and
combinatorial approach provides us with general and quantitative methods for
covering all such models [6 ± 8]. This way should be pursued further, since putting a
theory into an abstract mathematical format is an ultimate target of science. However,
the generality of the theory should always be ascertained with practical scientific
problems to make the mathematical format of the theory acceptable to both experi-
mental and theoretical chemists.

As a methodology of the second way, we have pointed out the importance of coset
representations G(/Gi) to give a systematic format to organic and inorganic config-
urations. We have then proposed the concept of sphericity on the basis of the chirality/
achirality properties of the groups G and Gi [9], which has been applied to the
redefinition of prochirality [9] [10], topicity [8] [11], stereogenicity [11], and aniso-
chrony [12].We have further proposed the subduction of coset representations as a new
concept [13] and have applied it to combinatorial enumeration [13], to the classi-
fication of molecular symmetries [14], and to the design of achiral and chiral molecules
{15]. Although our approach has been applied to inorganic compounds such as
octahedral complexes [16] and ferrocene derivatives [17], our efforts have mainly
focused on organic stereochemistry [18] [19].

The present paper deals with the stereochemistry of square-planar complexes as
typical model for inorganic stereochemistry, where the ligancy-4 character of a square-
planar skeleton (such as 2 and 3) will be compared with that of a tetrahedral skeleton
(such as 1). The present discussion on the D4h symmetry of the square-planar skeleton,
which has several subgroups in common with the Td symmetry of the tetrahedral-
skeleton for organic stereochemistry, will reveal essential features of inorganic
stereochemistry. Moreover, the comparison between the point group D4h and the
symmetry group of degree 4 (S[4]) will provide us with a deeper insight into the chirality
and stereogenicity of square-planar complexes.

2. Symmetry of Square-Planar Complexes. ± 2.1. Mark Table for D4h. The square-
planar skeleton 4 (Fig. 2), in which the symbol A represents an achiral ligand and the
symbol M represents a metal, belongs to the point group D4h [20]. This point group
involves 16 symmetry operations as follows:

D4h� {I, C4, C2(3) , C
3
4, C2(1) , C�2(1) , C2(2) , C�2(2) ;

�h, S4, i, S
3
4, �v(1) , �d(1) , �v(2) , �d(2)} (1)

The operation C2(3) is a rotation by 180� around a four-fold axis perpenticular to the
square-planar skeleton. The four-fold axis accompanies rotations C4 and C 3

4, which
generate rotoreflections S4 and S 3

4 by virtue of �h. Note that the operation �h is a
reflection with respect to the plane of the square. Each of the operations C2(1) and C2(2)

is a dihedral rotation by 180� around a two-fold axis through the linear arangement of
the bonds A�M�A. The operationsC �

2�1� andC �
2�2� are another set of dihedral rotations

by 180� around two-fold axes, each of which bisects the angle between the adjacent
bonds A�M�A. The operation i is an inversion with respect to the center. The
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operations �v(1) and �v(2) are reflections due to mirror planes, each of which is
perpendicular to the plane of the complex and contains the bonds A�M�A. The
operations �d(1) and �d(2) are reflections due to mirror planes bisecting the adjacent
angle A�M�A.

The point group D4h has 27 subgroups up to conjugacy. When two or more groups
belong to the same point group but are not conjugate withinD4h , they are differentiated
by adding primes. For example, the point groups C2, C �

2, and C ��
2 represent chiral

subgroups of order 2, which represent C2� {I, C2(3)}, C �
2 � {I, C2(1)}, and C ��

2 � [I, C �
2�1�},

respectively. The respective two-fold axes correspond to those of C2h , C �
2h, and C ��

2h. The
two-fold axis for the point group C2 is in common with C2v and C �

2v. On the other hand,
the two-fold axis for C �

2 corresponds to C ��
2v, while that for C ��

2 corresponds to C ���
2v.

The four positions of the square-planar skeleton are equivalent and are, therefore,
an orbit (equivalence class). By application of a general procedure described in [8], the
orbit is determined to be governed by a coset representation (CR) D4h(/C ��

2v).
For the purpose of accomplishing this assignment and for the subsequent

combinatorial enumeration, we use a mark table for D4h (Fig. 3), which is calculated
from the mulitplication table of D4h . We regard the mark table (Fig. 3) as a 27 by 27
matrix (M), where the row or column number (27) is equal to the number of
inequivalent subgroups. Thereby, we can obtain its inverse (M�1), which is also useful
for combinatorial enumeration. When the four positions are numbered from 1 to 4 as
shown in Fig. 2, a permutation representation is obtained as follows:

D4h(/C ��
2v)� {(1)(2)(3)(4), (1234), (13)(24), (1432),

(1)(24)(3), (12)(34), (13)(2)(4), (14)(23),

(1)(2)(3)(4), (1234), (13)(24), (1432),

(1)(24)(3), (12)(34), (13)(2)(4), (14)(23)} (2)

where the permutations on the right-hand side correspond to the elements of Eqn. 1 in
this order. Each permutation with an overline represents an improper rotation of D4h ,
which produces a mirror image. By starting from the permutation representation
(Eqn. 2), we obtain a fixed-point vector (FPV) as follows:

FPV� (4,0,2,0,2,0,4,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0) (3)

where we count fixed points when restricted into each subgroup. Since the FPV is equal
to the D4h(/C ��

2v) row of the mark table shown in Fig. 3, the permutation representation
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Fig. 2. Numbering of a square-planar skeleton



(Eqn. 2) is determined to be the CR D4h(/C ��
2v). Alternatively, this result is obtained by

the multiplication of the FPV and the inverse mark table M�1.
The local symmetry is determined to be C ��

2v � {I, C2(1) , �h, �v(1)}, which is assigned to
a permutation group:

{(1)(2)(3)(4), (1)(24)(3),(1)(2)(3)(4), (1)(24)(3)} (4)

This permutation group reveals that the group C ��
2v fixes points 1 and 3.

2.2. Desymmetrization and Subduction of Coset Representations. A square-planar
complex is considered to be generated by putting a set of ligands1) [20] on the four
positions of a square-planar skeleton 4. The full D4h symmetry is obtained by putting
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Fig. 3. Mark table (M) forD4h . The symbol /D4H is abbreviated from the symbol of each CR. For example, the
symbol /C1 represents a CR D4h(/C1). The alignment of subgroups in each row is the same as that of the local

subgroups in the CR column.

1) Strictly speaking the terms −proligand× and −promolecule× should be used instead of −ligand× and −molecule×
[20]. Otherwise, we should presume the four ligands A×s with a symmetry equal to or higher than C2v in
order to maintain the symmetry of D4h .



four A×s1) to give the complex 4 shown in Fig. 2, while a molecule (e.g., 2 or 3)
belonging to a subsymmetry is obtained by putting an appropriate set of different
ligands (e.g., A2B2)2). The derivation process of 2, for example, is represented by a
subduction of the CRD4h(/C ��

2v) into the subgroup C ���
2v. The subgroup C ���

2v (� {i, C �
2�1�, �h,

�d(1)}) is assigned to a permutation representation:

D2h(/C ��
s ) �C ���

2v � {(1)(2)(3)(4), (12)(34), (1)(2)(3)(4), (12)(34)} (5)

Thereby, the four positions are divided into two sets (orbits) of positions, {1, 2} and {3,
4}. Since these orbits are respectively governed by C ���

2v(/C �
s), they accommodate A2 and

B2 separately. This process is represented by the following equation:

D2h(/C ��
s ) �C ���

2v � 2C ���
2v(/C �

s) (6)

Such a sum of CRs as appearing on the right-hand side can be precalculated
algebraically with respect to each subgroup with mark tables and inverse mark tables
forD4h and the subgroupGi. Although this procedure has been shown for general cases
in our book [8], the subduction concerningD4h has not been reported because the mark
table and its inverse forD4h have not been reported. The present results for theD4h(/C ��

s )
orbit are collected in Table 1.

Each sum of CRs collected in Table 1 represents a ligand partition to produce a
square-planar derivative, where each CR corresponds to an orbit of ligands and is
characterized by its sphericity (enantiospheric, homospheric, and hemispheric) [8] [9].
Since the spherictity is concisely represented by a dummy variable (i.e., ad for a
homospheric orbit, bd for a hemispheric orbit, or cd for an enantiospheric orbit), each
sum of CRs is represented by a product of such dummy variables, where the subscript d
represents the size of the orbit at issue. The product of dummy variables is called a unit
subduced cycle index with chirality fittingness (USCI-CF), which is listed in Table 1 [8]
[9]. When the sphericities are ignored by substituting a dummy variable sd for ad, bd,
and cd, a unit subduced cycle index (USCI) without chirality fittingness is obtained, as
listed also in Table 1.

3. Combinatorial Enumeration of Square-Planar Complexes. ± 3.1. Enumeration
under Point-Group Symmetry. We have reported four methods of the USCI approach
for combinatorial enumeration [21] [22]. Among them, we here use the PCI method
[23] (the generating-function method based on partial cycle indices (PCIs)) including
an extension for taking account of chirality fittingness. The UCSI-CFs listed in Table 1
are aligned and regarded as a hypothetical row vector, which is multiplied by the matrix
of the inverse mark table (M�1) forD4h . This treatment can be symbolically represented
by the following expression:

(b4
1, b

2
2, b

2
1b2, b

2
2, a

2
1c2, c

2
2, a

4
1, c

2
2, b4 , c4, a

2
2, c4, a

2
1a2, a

2
2, a

2
2,

a2c2, c4, b
2
2, b4 , a4 , a4 , c4 , a4 , a

2
2, a4, b4, a4) �M�1 (7)
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2) A term A2B2 is used in place of A2B2 for the consistency with the combinatorial enumeration described in
this article.



Thereby, we obtain the partial cycle index with chirality fittingness (PCI-CF) for every
subgroup:

PCI-CF(C1, $d)�
1
16

b4
1 �

1
16

b2
2 �

1
8
b1
2b2 �

1
8
a21c2 �

3
16

c22 �
1
16

a41

� 1
8
b4 �

3
8
c4 �

1
4
a21a2 �

1
4
a2c2 �

1
2
a4 (8)

PCI-CF(C �
2 , $d)�

1
4
b2
1b2 �

1
4
a21a2 �

1
4
a2c2 �

1
4
b2
2 �

1
2
a22 (9)

PCI-CF(C ��
2 , $d)�

1
4
b2
2 �

1
4
a22 �

1
4
c4 �

1
4
b4 �

1
4
a4 (10)

PCI-CF(Cs, $d)�
1
4
a21c2 �

1
4
a22 �

1
4
a21a2 �

1
4
a4c2 (11)

PCI-CF(C �
s , $d)�

1
4
c22 �

1
2
c4 �

1
4
a22 �

1
2
a4 (12)
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Table 1. Subductions of D4h(/C ��
2v )a)

Subduction USCI-CF Eqn. No.

D4h(/C ��
2v ) �C1� 4C1(/C1) b4

1 34
D4h(/C ��

2v ) �C2� 2C1(/C1) b2
2 35

D4h(/C ��
2v ) �C �

2 �C �
2(/C1)� 2C �

2(/C2) b2
1b2 36

D4h(/C ��
2v ) �C ��

2 � 2C ��
2(/C1) b2

2 37
D4h(/C ��

2v ) �Cs�Cs(/C1)� 2Cs(/Cs) a21c2 38
D4h(/C ��

2v ) �C �
s � 2C �

s(/C1) c22 39
D4h(/C ��

2v ) �C ��
s � 4C ��

s(/Cs) a41 40
D4h(/C ��

2v ) �Ci� 2Ci(/C1) c22 41
D4h(/C ��

2v ) �C4�C4(/C1) b4 42
D4h(/C ��

2v ) � S4� S4(/C1) c4 43
D4h(/C ��

2v ) �C2v�C1v(/Cs)�C2v(/C �
s ) a22 44

D4h(/C ��
2v ) �C �

2v �C �
2v(/C1) c4 45

D4h(/C ��
2v ) �C ��

2v �C ��
2v(/C �

s )� 2C ��
2v(/C2v) a21a2 46

D4h(/C ��
2v ) �C ���

2v � 2C ���
2v(/C �

s ) a22 47
D4h(/C ��

2v ) �C2h� 2C2h(/Cs) a22 48
D4h(/C ��

2v ) �C �
2h �C �

2h(/C2)�C �
2h(/Cs) a2c2 49

D4h(/C ��
2v ) �C ��

2h �C ��
2h(/C1) c4 50

D4h(/C ��
2v ) �D2�D2(/C �

2 )�D2(/C ��
2 ) b2

2 51
D4h(/C ��

2v ) �D �
2 �D �

2(/C1) b4 52
D4h(/C ��

2v ) �C4v�C4v(/Cs) a4 53
D4h(/C ��

2v ) �C4h�C4h(/Cs) a4 54
D4h(/C ��

2v ) �D2d�D2d(/C �
2 ) c4 55

D4h(/C ��
2v ) �D �

2d �D �
2d(/Cs) a4 56

D4h(/C ��
2v ) �D2h�D2h(/C �

2v )�D2h(/C ��
2v ) a22 57

D4h(/C ��
2v ) �D �

2h �D �
2h(/C ��

s ) a4 58
D4h(/C ��

2v ) �D4�D4(/C �
2 ) b4 59

D4h(/C ��
2v ) �D4h�D4h(/C ��

2v ) a4 60

a) For the meaning of symbols, see text.



PCI-CF(C ��
s , $d)�

1
8
a41 �

1
4
a21a2 �

1
8
a22 �

1
4
a4 (13)

PCI-CF(Ci, $d)�
1
8
c22 �

1
8
a22 �

1
4
a2c2 �

1
4
c4 �

1
4
a4 (14)

PCI-CF(C ��
2v, $d)�

1
2
a21a2 �

1
2
a22 (15)

PCI-CF(C ���
2v, $d)�

1
2
a22 �

1
2
a4 (16)

PCI-CF(C �
2h, $d)�

1
2
a2c2 �

1
2
a22 (17)

PCI-CF(C ��
2h, $d)�

1
2
c4 �

1
2
a4 (18)

PCI-CF(D2, $d)�
1
4
b2
2 �

1
4
c4 �

1
4
a22 � 1

4
b4 �

1
2
a4 (19)

PCI-CF(D2d , $d)�
1
2
c4 �

1
2
a4 (20)

PCI-CF(D2h , $d)�
1
2
a22 �

1
4
a4 (21)

PCI-CF(S4, $d)�
1
2
b4 �

1
2
a4 (22)

PCI-CF(D4h , $d)� a4 (23)

where the symbol $d represents a set of ad, bd, and cd for the sake of simplicity. Since the
PCI-CFs for C2, C4, S4, C2v, C �

2v, C2h ,D �
2, C4v, C4h ,D �

2d, andD �
2h vanish, they are omitted

in this list of PCI-CFs. It should be emphasized that the disappearance of a PCI-CF
represents the nonexistence of complexes belonging to the corresponding point group
within the scope of the definition of USCI-CFs1). In fact, if a ligand A belongs to a
supergroup of C2v or, if a proligand A is taken into consideration [20], the resulting A4

complex undergoes no symmetry restriction, exhibiting D4h symmetry in agreement
with the CRD4h(/C ��

2v). In other words, possible complexes havingC4v,C4h ,D �
2d, andD �

2h

coalesce to give the D4h complex.
The discussion described in the preceding paragraph can be qualitatively explained

by comparing the USCI-CFs collected in Table 1, where the procedure described in [14]
for judging the existence of subsymmetries is applied to the present cases. For example,
the subductions intoC4v,C4h ,D �

2d, andD �
2h correspond to the sameUSCI-CF (a4), which

is identical to that of D4h . Hence, they are grouped into D4h , as long as ligand
symmetries do not disturb the local symmetry of theD4h(/C ��

2v) orbit. On the other hand,
the subductions intoC4 ,D�2, andD4 correspond to the sameUSCI-CF (b4) but different
from that (a4) of D4h . Hence, complexes of the possible symmetries coalesce to give a
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D4 complex. Similarly, the complexes of C2v, C2h , and D2h are grouped to give D2h

complexes because of the same USCI-CF (a22). Although C ���
2v corresponds to the same

USCI-CF (a22), the C ���
2v complex can exist because C ���

2v is not a subgroup of D2h . The
symmetries S4,C �

2v, andD2d are grouped intoD2d , because the subduction data show the
same USCI-CF (c4), which is different from that (a4) ofD4h . In spite of the same USCI-
CF (c4), a C ��

2h complex is available, because C �
2h is not a subgroup of D2d .

When we directly rely on the subductions collected in Table 1, we are able to discuss
cases in which ligand symmetries mismatch the local symmetry of the D4h(/C ��

2v) orbit
[20]. For example, if a ligand has the symmetry Cs that is lower than the local symmetry
C ��

2v, it restricts the global symmetry D4h into either one of C4v, C4h , D �
2d, and D �

2h. Thus,
derivatives of these subgroups can accessible, because the subduction data collected in
Table 1 indicate that the local symmetry is Cs (and related ones).

According to the three kinds of dummy variables, we use three kinds of ligand
inventories as follows:

ad�Ad�Bd�Cd�Dd (24)

bd�Ad�Bd�Cd�Dd� pd� pd� qd� qd� rd� rd� sd� sd (25)

cd�Ad�Bd�Cd�Dd� 2pd/2pd/2� 2qd/2qd/2� 2rd/2rd/2� 2sd/2sd/2 (26)

which are introduced into the PCI-CFs (Eqns. 8 ± 23). The resulting equations are
expanded to give generating functions for respective subgroups. Several examples of
the generating functions are shown as follows:

fC1
�
�
1
2
(A2Bp�A2Bp≈)� 1

2
(AB2p�AB2p≈)� ¥ ¥ ¥

�

�
�
1
2
(A2pq�A2pq)� 1

2
(B2pq � B2pq)� ¥ ¥ ¥

�

�
�
3
2
(ABCp�ABCp≈)� 3

2
(ABDp�ABDp≈)� ¥ ¥ ¥

�
(27)

�
�
1
2
(ABp2�ABp≈2)� 1

2
(ABq2�ABp2)� ¥ ¥ ¥

�

� [ABpp�ABqq� ¥ ¥ ¥ ]� ¥ ¥ ¥ (28)

fC ��
2
�
�
1
2
(A2p2�A2p2)� 1

2
(B2p2�B2p2)� ¥ ¥ ¥

�

�
�
1
2
(p2q2�p2q2)� 1

2
(p2r2 � p2 r2)� ¥ ¥ ¥

�
(29)

fC �
s
� [A2pp�B2pp� ¥ ¥ ¥ ]� [2ppqq� 2pprr� ¥ ¥ ¥ ] (30)

A pair of enantiomers is counted with a combined term such as (1/2)(A2Bp �A2Bp≈ ).
On the other hand, the termABpp≈ designates a pair of enantiomers, since it is regarded
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as (1/2)(ABpp≈ �ABp≈p). The resulting coefficients are listed in Table 2, where an
arbitrary term is selected as a representative for the terms of ligand partitions of the
same type that are contained in each pair of brackets of a generating function such as in
Eqns. 28 ± 30.

The data listed in Table 2 and additional data are illustrated in Figs. 4 and 5, where
derivatives of the same type are depicted by an appropriate representative. As for a
chiral derivative, an appropriate enantiomer is depicted as a representative.

3.2. Enumeration under Permutation-Group Symmetry. By the inspection of the
permutations listed in Eqn. 2, we find that the permutations corresponding to the
proper rotations (i.e.,D4) are the same as those for the improper rotations, if we ignore
the overlines. Note that theD4 part of the CRD4h(/C ��

2v) is equalized to the permutation
group S 4� 	

9 , which is a subgroup of the symmetric group of degree 4 (S[4]). To recognize
diastereoisomerism (e.g., between 2 and 3) properly, we should add the permutations
(14)(2)(3) and (12)(3)(4) (or (1)(243) and (1)(234)) to those of S 4� 	

9 (
D4). Thereby,
we obtain the symmetric group S[4] (order 24). The coset decomposition of S[4] by S 4� 	

9 is
represented by the following equation:

S[4]� S 4� 	
9 � (1) (243)S 4� 	

9 � (1)(234)S 4� 	
9 (31)

On an abstract level, the symmetric group S[4] is identical to the group for a teterahedral
model (Td) [24]. Hence, we can obtain the PCIs for this case, which are found to be
equal to Eqns. 21 ± 31 reported in [24]. Since we now take no account of chirality
fittingness, we use a single type of ligand inventory as follows:

Table 2. Number of Square-Planar Complexes under D4h
a)

C1 C �
2 C ��

2 Cs C �
s C ��

s Ci C ��
2v C ���

2v C �
2h C ��

2h D2 D2d D2h D4 D4h

A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
A3B 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
A3p 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2B2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
A2BC 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
A2Bp 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2p2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
A2pp≈ 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
A2pq 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ABCD 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
ABCp 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ABp2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ABpp≈ 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ABpq 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ap3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ap2p≈ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ap2q 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
App≈q 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Apqr 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a) Square-planar complexes of the subgroups C2 , C4 , S4 , C2v, C �
2v, C2h , D �

2, C4v, C4h , D �
2d, and D �

2h do not exist
under the conditions of the present article.
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sd�Ad�Bd�Cd�Dd�pd�pd� qd� qd� rd� r≈d� sd� s≈d (32)

where the variable sd on the left-hand side and the sd on the right-hand side have
different meanings. The inventory (Eqn. 32) is introduced into the PCIs (Eqns. 21 ± 31
reported in [24]), and the resulting equations are expanded to give generating functions
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Fig. 4. Derivation of square-planar complexes (Part I). A complex with an asterisked number is prochiral.



for respective subgroups. The coefficients of the generating functions are listed in
Table 3. The assignments to permutation-symmetries of square-planar complexes are
added to the data listed in Figs. 4 and 5.

4. Equivalency under Point-Group Symmetry. ± 4.1. Achiral Complexes. Let us
consider equivalency under point-group symmetry by using achiral molecules of the
ligand partition A2B2. Table 2 shows that there are two isomers for the ligand partition
A2B2, which belong to D2h and C ���

2v. They are depicted in Fig. 4: 7 (D2h) and 13 (C ���
2v).

Since they are based on a square-planar skeleton of D4h symmetry, their isomer
equivalency is examined on the action of the point group D4h . For example, 7 is
converted to sixteen homomers under D4h , as shown in Fig. 6. Note that, in each
derivative, the positions 1 and 3 accommodate an achiral ligand A, while the positions 2
and 4 accommodate another achiral ligand B. Since the ligands A and B are achiral, the
positions 1≈ and 3≈ accommodate the ligand A, and the positions 2≈ and 4≈ accommodate
the ligand B. Among the operations D4h (Eqn. 1), Fig. 6 shows that the operations
corresponding toD2h (� {I, C2(3) , C2(1) , C2(2) , C4 , �h, i, �v(1) , �v(2)}) keep 7 invariant. As a
result, the sixteen homomers are divided into two sets of homomers, i.e., {7a, 7c, 7e, 7g ;
7≈a, 7≈c, 7≈e, 7≈g} and {7b, 7d, 7f, 7h ; 7≈b, 7≈d, 7≈ f, 7≈h}. These two sets construct a homospheric
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Fig. 5. Derivation of square-planar complexes (Part II)



orbit governed by the CR D4h(/D2h), where the size of the orbit is calculated to be
�D4h � / �D2h �� 16/8� 2. Thereby, 7 is determined to belong to the point group D2h ,
which is identified with the local symmetry of the CR.

Fig. 6. Isomer equivalence for 7 (A2B2) under D4h
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Table 3. Number of Square-Planar Complexes under S[4]

Number of molecules

S 4� 	
1 S 4� 	

2 S 4� 	
3 S 4� 	

4 S 4� 	
5 S 4� 	

6 S 4� 	
7 S 4� 	

8 S 4� 	
9 S 4� 	

10 S[4]

A4 0 0 0 0 0 0 0 0 0 0 1
A3B 0 0 0 0 0 0 0 1 0 0 0
A3p 0 0 0 0 0 0 0 1 0 0 0
A2B2 0 0 0 0 0 0 1 0 0 0 0
A2BC 0 0 1 0 0 0 0 0 0 0 0
A2Bp 0 0 1 0 0 0 0 0 0 0 0
A2p2 0 0 0 0 0 0 1 0 0 0 0
A2pp≈ 0 0 1 0 0 0 0 0 0 0 0
A2pq 0 0 1 0 0 0 0 0 0 0 0
ABCD 1 0 0 0 0 0 0 0 0 0 0
ABCp 1 0 0 0 0 0 0 0 0 0 0
ABp2 0 0 1 0 0 0 0 0 0 0 0
ABpp≈ 1 0 0 0 0 0 0 0 0 0 0
ABpq 1 0 0 0 0 0 0 0 0 0 0
Ap3 0 0 0 0 0 0 0 1 0 0 0
Ap2p≈ 0 0 1 0 0 0 0 0 0 0 0
Ap2q 0 0 1 0 0 0 0 0 0 0 0
App≈q 1 0 0 0 0 0 0 0 0 0 0
Apqr 1 0 0 0 0 0 0 0 0 0 0



4.2. Chiral Complexes and Enantiomeric Relationship. For chiral molecules of the
ligand partition A2p2, Table 2 shows that there are two isomers belonging to D2 (9 in
Fig. 4) and C��2 (25 in Fig. 4). As shown in Fig. 7, 9 is converted to eight homomers and
eight enantiomers under D4h . Note that the positions 2 and 4 accommodate a chiral
ligand p, while the positions 2≈ and 4≈ accommodate the enantiomeric ligand p≈ . Since the
operations corresponding to D2 (� {I, C2(3) , C2(1) , C2(2)}) keep 9 invariant, as shown in
Fig. 7, 9 is determined to belong to D2 symmetry. This process is characterized by the
CR D4h(/D2), which is enantiospheric. This entantiosphericity is confirmed by the
comparison of the two sets of homomers (i.e., {9a, 9c, 9e, 9g} and {9b, 9d, 9f, 9h}) with
the two sets of enantiomers (i.e., {9≈a, 9≈c, 9≈e, 9≈g} and {9≈b, 9≈d, 9≈ f, 9≈h}). These four sets
construct an enantiospheric orbit governed by the CR D4h(/D2), where the size of the
orbit is calculated to be �D4h � / �D2 �� 16/4� 4.

4.3. Prochirality. A complex is prochiral if it has at least one enantiospheric orbit
[8]. According to this criterion, the data listed in Table 1 show that, among the possible
achiral subgroups (D4h , D2h , D2d , C ��

2h, C �
2h, C ���

2v, C ��
2v, Ci, C��s, C�s, and Cs), prochiral

complexes are determined to belong to D2d (8), C ��
2h (11), C �

2h (12), Ci (16), C�s (21, 22,
and 23), and Cs (24). They are designated in Fig. 4 by an asterisk added to each
compound number.

5. Equivalency under Permutation-Group Symmetry. ± 5.1. Proper and Improper
Permutations. Let us consider the permutation-group symmetry of 7, which is compared
with the point-group symmetry shown in Fig. 6. The permutation group at issue is the
symmetric group of degree 4 (S[4]), as shown in Eqn. 31. The permutations contained in

Fig. 7. Isomer equivalence for 9 (A2p2) under D4h
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S[4] are here classified into proper permutations and improper permutations3). A
proper permutation is defined as being equal to a permutation contained in the CR that
corresponds to the maximal chiral subgroup (D4) of D4h . Such proper permutations
form a permutation group S 4� 	

9 , which is isomorphic to D4. Permutations other than
proper rotations are defined as improper permutations. Such improper permutations
are involved in the cosets (1)(243)S 4� 	

9 and (1) (234)S 4� 	
9 (Eqn. 31).

As found in Fig. 8, the A2B2 complex 7 is converted to homomers by the action of
the proper permutations (the top row), while it is converted to diastereoisomers of the
same kind (13a to 13p) by the action of improper permutations (the middle and bottom
rows). By inspection of the resulting 24 products, the original 7 is fixed into itself (7a,
7c, 7e, and 7g) on the action of the following subgroup:

S 4� 	
7 � {(1)(2)(3)(4), (13)(24)(1)(24)(3), (13)(2)(4)} (33)

Thereby, the resulting 24 products are divided into six sets, i.e., {7a, 7c, 7e, and 7g}, {7b,
7d, 7f, and 7h} (top row); {13a, 13c, 13e, and 13g}, [13b, 13d, 13f, and 13h} (middle row);
[13i, 13k, 13m, and 13o}, {13j, 13l, 13n, and 13p} (bottom row). The six sets construct an
orbit governed by the CR S[4](/S 4� 	

7 ), where the size of the orbit is calculated to be � S[4] � /
� S 4� 	

7 �� 24/4� 6. This means that 7 and 13 are equivalent under the permutation-group
symmetry S[4] . Thus a diastereoisomeric relationship such as for 7 and 13 is
characterized as an equivalency under a permutation-group symmetry. This conclusion
is confirmed by the enumeration result collected in Table 3, where a duplex of 7 and 13
is counted once so that the value 1 appears at the intersection between the A2B2 row
and the S 4� 	

7 column. The effect of S[4] on the A2p2 complex 9 can be discussed in a similar
way.

5.2. Stereogenic and Astereogenic Groups. Definition. By virtue of proper and
improper permutations, the subgroups of S[4] are classified into two types: stereogenic
and astereogenic. A stereogenic group is defined as a group having proper permutations
only, while an astereogenic group is defined as a group having proper and improper
permutations. For a given astereogenic group, the maximal stereogenic subgruop is
defined as a stereogenic subgroup having all the proper permutations of the group.
Thus, the subgroup S 4� 	

9 is a maximal stereogenic subgroup of S[4] , if we take into account
the square-planar skeleton of D4h symmetry. It should be noted that such a maximal
stereogenic subgroup depends upon the selection of the sekeleton.

Stereogenic Groups. Among the subgroups of the symmetric group S[4] , stereogenic
groups available for square-planar complexes are determined to be S 4� 	

9 , S
4� 	
7 , S

4� 	
6 , S

4� 	
5 , S

4� 	
3 ,

S 4� 	
2 , and S 4� 	

1 , because each of them contains no improper permutations. However, the
enumeration results (Table 3) show that only the subgroups S 4� 	

7 , S
3� 	
7 , and S 4� 	

1 are capable
of generating square-planar complexes.

Since the A2B2 complexes described above (7 and 13) belong to S 4� 	
7 , they are

stereogenic so that they are interconvertible (namely, diastereoisomeric) under the
permutation-group symmetry S[4] . On the same line, the A2p2 complexes, 9 and 25, are
ascribed to the stereogenic group S 4� 	

7 . In general, the stereogenic group S 4� 	
7 generates a

duplex of diastereoisomers such as 7 and 13. Such duplexes of diastereoisomers as
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3) Do not confuse proper and improper permutations with odd and even permutations.



assigned to S 4� 	
7 are selected from Figs. 4 and 5, as being {7, 13}, {8, 11}, {9, 25}, and {10,

26}.
Similarly, the stereogenic group S 4� 	

3 also generates a duplex of diastereoisomers. We
select the following duplexes of diastereomers assigned to S 4� 	

3 from Figs. 4 and 5: {12,
21}, {15, 17}, {28, 39}, {29, 40}, {30, 44}, {32, 49}, {33, 50}, {36, 57}, {37, 58}, and {38, 59}.

On the other hand, the stereogenic group S 4� 	
1 generates a triplex of diastereoisomers

such as 18, 19, and 20. Such triplexes of diastereoisomers as assigned to S 4� 	
1 are selected

from Figs. 4 and 5, as being {16, 22, 23}, {18, 19, 20}, {24, 45, 45}, {41, 42, 43}, {46, 47, 48},
{51, 52, 53}, {54, 55, 56}, {60, 61, 62}, and {63, 64, 65}. It should be noted that the square-
planar complex 45 involved in the triplex {24, 45, 45} is not depicted in Figs. 4 and 5,
since these figures contain a single representative selected from each pair of
enantiomers. This means that the relationship between 45 and 45 is recognized as
being enantiomeric and, at the same time, as being diastereoisomeric (see below).

Astereogenic Groups. The remaining subgroups, i.e., S[4] , S 4� 	
10, and S 4� 	

8 , S 4� 	
4 , are

astereogenic in terms of the present criterion. The enumeration results (Table 3) show
that the subgroups S[4] and S 4� 	

8 are capable of generating square-planar complexes of
this type. For S[4] , we obtain 5 and 6. Square-planar complexes of S 4� 	

8 are found to be 14,
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Fig. 8. Isomer equivalence for 7 (A2B2) under S[4]



27, 31, 34, and 35, since they contain all the proper and improper permutations of S 4� 	
8 .

Obviously, each of these complexes is converted to homomers under the action of S[4] .
Hence, it is determined to be astereogenic (i.e., self-diastereomeric) so that it has no
diastereoisomer.

5.3. Enantiomeric and Diastereoisomeric Relationships. As described above, point-
group symmetry describes chirality/achirality, while permutation-group symmetry
corresponds to stereogenicity/astereogenicity. In general, equivalency under point-
group symmetry determines an enantiomeric relationship, while equivalency under
permutation-group symmetry determines a diastereoisomeric relationship. Although
the two relationships can be discussed distinctly in most cases for square-planar
complexes, they occasionally overlap and degenerate into one category.

Let us consider the case of 45, which belongs to the stereogenic group S 4� 	
1 . The

conversion of 45 under permutation-group symmetry is illustrated in Fig. 9. The top
row indicates a set of eight homomers (45a etc.), the middle row shows a set of eight
diastereoisomers (24a, etc.), and the bottom row contains another set of eight
diastereoisomers (45a, etc.). Obviously, the generation of such a triplex of diaster-
eoisomers is in agreement with the general properties of the stereogenic group S 4� 	

1 .
However, the set of diastereoisomers appearing in the bottom row (45a, etc.) is at the
same time enantiomeric to the set of homomers in the top row (45a, etc.). Even if a
diastereoisomeric relationship and an enantiomeric relationship occasionally overlap,
the relationship between 45 and 45 (and additionally 24) is diastereoisomeric (and by
no means enantiomeric) so long as we rely on the present definition coming from a
permutational point of view (Fig. 9). However, it is convenient to classify stereogenic
molecules by means of the two cases of stereochemical aspect. Thus, if a molecule is
converted into its enantiomer under a permutation-group symmetry, it is defined a
sbeing enantiostereogenic (or shortly, enantiogenic); otherwise, it is defined as being
diastereogenic. In terms of this criterion, 45 is enantiostereogenic and diastereogenic.
The complex 24 is also regarded as being enantiosterogenic and diastereogenic, since
the action of S[4] generates a pair of enantiomers, 45 and 45.

6. Comparison with Tetrahedral Molecules. ± In the present approach, the maximal
stereogenic subgroup of a permutation group is selected as being isomorphic to the
maximal chiral subgroup of the corresponding point group. This selection stems from
our being able to equalize proper rotations (strictly speaking, the corresponding coset
representations) and proper permutations, even if chiral ligands are taken into account.
The order of the maximal stereogenic subgroup is not always one-half of the order of
the permutation group at issue, whereas the order of the maximale chiral subgroup is
always one-half of the order of the point group.

For the present case of square-planar complexes, we useD4h as the point group and
S[4] as the permutation group. Note that D4h is not isomorphic S[4] . The order of the
maximal chiral subgroup D4 (order 8) is one-half of the order of D4h (order 16), while
the order of the maximal stereogenic subgroup S 4� 	

9 (order 8) is one-third of the order of
S[4] (order 24).

For the case of tetahedral molecules, on the other hand, we have used Td (order 24)
as the point group and the same S[4] (order 24) as the permutation group [26]. Note that
Td is isomorphic to S[4] . Hence, we have considered the maximal chiral subgroup T
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(order 12) vs. the point group Td (order 24); and the maximal stereogenic subgroup S 4� 	
10

(order 12) vs. the point group S[4] (order 24). This feature has enabled us to discuss
enantiomeric and diastereoisomeric relationships in terms of the observance and
violation of chirality fittingness, where Td and S[4] have been regarded as the same
abstract group but have been differentiated by taking account of chirality fittingness.

Whether a given molecule is stereogenic or astereogenic depends upon the
selection of the maximal permutational subgroup. This provides us with a solution for
the question described for Fig. 1. The A2B2 molecule (1) based on a tetrahedral
skeleton is characterized by S �4	

7 , which is asterogenic under the maximal permutation
subgroups S 4� 	

10. Hence, it has no diastereoisomer. The A2B2 molecule (2) based on a
square-planar skeleton is characterized by the same S 4� 	

7 ; however, it is determined to be
stereogenic, since the maximal permutational subgroup S 4� 	

9 is taken into consideration
in the present paper. Hence, it has the corresponding diastereoisomer (3).

7. Conclusions. ± Square-planar complexes with achiral and chiral ligands are
combinatorially enumerated under the point-group D4h , where its mark table and its
inverse mark table are prepared and used to calculate the subduction of coset
representations. The enumeration results, which are itemized with formulas and point-
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Fig. 9. Isomer equivalence for 45 (ABpp≈ ) under S[4]



group symmetries, are used to discuss equivalency under point-group symmetry, e.g.,
enantiomeric relationships for chiral complexes and prochirality for achiral complexes.
The combinatorial enumeration of the square-planar complexes are alternatively
carried out under the permutation-group S[4] , which is the symmetric group of degree 4.
After the definition of proper and improper permutations, the subgroups of S[4] are
classified into stereogenic and astereogenic groups for square-planar complexes.
Thereby, equivalency under permutation-group symmetry is discussed to clarify
enantiomeric and diastereoisomeric relationships. The comparison between the action
of a point group and that of a permutation group provides us a new and versatile
methodology for restructuring stereochemistry.
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